LiFePO4 Cell Configurations 12V, 24V & 48V This deck shows several common configurations for using LiFePO4 Cells to build 12V, 24V and 48V batteries. ### Series-Only (1P) Configurations 12V & 24V #### Series-Only (1P) Configurations 12V, 24V & 48V #### **4S2P Wiring for 12V batteries (Series First)** Voltage = 4 times cell voltage = Nominal 12V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh= Voltage X Battery Ah = 12V x (2 x Cell Ah) = 24 x Cell Ah #### **2P4s Wiring for 12V batteries (Parallel first)** Voltage = 4 times cell voltage = Nominal 12V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh= Voltage X Battery Ah = 12V x (2 x Cell Ah) = 24 x Cell Ah #### **8S2P Wiring for 24V Batteries – Series First** Voltage = 8 times cell voltage = Nominal 24V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh= 24V x (2 x Cell Ah) = 48 x Cell Ah #### **Possible 24V 2P8S Fortune Cell Layouts** Voltage = 8 times cell voltage = Nominal 24V for LiFePO4 **BMS Balance** Ah= 2X Cell Ah (assuming balanced Cells) Harness not **Heavy Duty** Factory shown Wh= 24V x (2 x Cell Ah) = $48 \times Cell$ Ah 88 BMS 2P ВМ **BMS BMS BMS** #### **16S2P Wiring for 48V Batteries – Series First** Voltage = 16 times cell voltage = Nominal 48V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh = 48 X (2 x Cell Ah) = 96 x Cell Ah #### **2P16S Wiring for 48V Batteries – Parallel First** BMS Balance Harness not shown Voltage = 16 times cell voltage = Nominal 48V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh = 48 X (2 x Cell Ah) = 96 x Cell Ah #### **2P16S Wiring for 48V Batteries – Parallel first (Continued)** BMS Balance Harness not shown Voltage = 16 times cell voltage = Nominal 48V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh = 48 X (2 x Cell Ah) = 96 x Cell Ah #### A note about Bus-Bars Factory bus bars are generally sized to work well in series hook-ups but may be undersized for parallel cell hook-ups. In the Previous pages, when 'heavy duty' bus-bars are indicated, I make Bus-Bars out of stock that is twice as thick as the factory bus bars (or at least double up the factory bus-bars). For parallel cell configurations it is important to balance voltage drop between cells so the cells wear evenly and long bus bars that span more than two cells pose a greater risk of uneven voltage drops. In the diagram below, posts A, B, C, D, E and F are tied together so we think of them as all being the same voltage. However, due to the resistance in the bus bars, there will be a small voltage drop between A&B, another drop between B&C, C&D and so on. Since the charge curve for LiFePO4 is so flat the result of these small voltage drops is that the cells with the higher voltages will charge/discharge at a slightly slower rate. For 2P configurations, the voltage drops turn out to 'balance' and not be a problem. However, for 3P or greater, the voltage drops do not balance out. If you have good busbars, this effect will be very small but can add up over time. Consequently, I like to avoid the longer bus bars where I can. That is why I prefer arranging parallel cells like this: When I do need to span more than two posts, I like to make my own multi-hole bus bars rather than use a series of 2-hole bus-bars. (The connection between busbars will typically be more resistance than the bus bars themselves.) This may all be overkill, but it is the way I do it. ## Series first vs parallel first There is a lot of debate about whether series-first or parallel-first is best. The fact is, both of them are used successfully by many people. The 'correct' choice comes down to the particular situation and the designer's preference. | Parallel-First | | Series-First | | |--|--|--|---| | Pro | Con | Pro | Con | | Simplicity of a single BMS (Fewer corner cases, less electronics that can go bad) (possibly) Lower Price of the single BMS The BMS balances everything | Must use higher current BMS Only 'groups' of cells are managed and monitored With only one bank there is no fall back redundancy | Each cell is monitored and managed separately. If one bank goes out, you still have the other bank You can use lower current BMSs to build up a High current solution. | Complexity of two BMS and making sure the corner cases are covered. Doubling the BMSs can increase cost Doubling the BMSs doubles the circuitry that can go bad. The multiple BMSs don't balance between the two banks | ## Series first vs parallel first – Personal Preference Warning: The following is the authors personal preference. There is no right or wrong I do builds both ways, but I prefer Parallel first. - I believe that if you start out with good matched cells, the likelihood of one cell drifting way out from the others is very low so I don't feel a need for monitoring individual cells. - I am a strong believer in simplicity - In most of my builds, having half capacity does not help much. When I do series first it is usually because the BMS available will not handle the current for a parallel-first configuration. Other folks on the forum *strongly* believe Serial-First is the only way to go. Each designer must decide based on their situation and priorities #### Note About Weight LiFePO4 cells are considerably lighter than any form of Lead-Acid, but as the cell count goes up the battery can still get very heavy. Example. the EVE 280AH cells weight in at 5.2 Kg (11.5 LBS) each cell 8 cells = 41.2Kg (93 Lbs) 16 cells = 82.4Kg (184 LBS) Add the weight of Box and bits it becomes unwieldy quickly. Oversized Bus-bar Factory Bus-bar #### **Bonus: A few Possible 12V 4P4S Fortune Cell Layouts** ## Bonus: A few 4P8S (24V) Layouts ## Bonus: A few 4P16S (48V) Layouts #### **Document Revision History** - Revision 2 Added comments about alternate physical layouts - Revision 3 Added note about weight of large configurations. - Revision 4 Added Wh (Watt Hour) Calculations. - Revision 5 Added parallel-first configurations for each voltage and added a note about bus-bars. - Revision 5 Added a couple of 'bonus' layouts. - Revision 6 Updated note about bus-bars. - Revision 7 Added a page about design considerations for Series-First set ups. - Revision 8 Corrected a few minor typos/mistakes - Revision 9 Added a few 'bonus' 4P layouts. Also updated comments on long bus-bars.